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Summary

Three models were derived for the analysis of S-shaped dissolution patterns. The models are applicable to systems containing
drug substance from which the drug is dissolved under sink conditions. The models were based on the use of dissolution
probability, which is assumed to be dependent on time. Several physical mechanisms are present in the dissolving system, which
affect the dissolution probability and also the dissolution rate. Formally, the effect of these phenomena was taken into account with
a control factor. Three simple approximations of the control factor were used in deriving the dissolution models, the exponential,
the linear and the quadratic. The models were briefly tested with the dissolution data of theophylline tablets.

Introduction

In many cases tablet dissolution follows an
S-shaped profile. However, in the practical work
it is quite usual that this feature is not taken into
account when explaining the experimental data.
The standard methods in the dissolution data
analysis are the cubic root law, the square root
time equation and some modifications of the sim-
ple exponential function (Noyes et al., 1897; Hixon
et al., 1931; Higuchi, 1967; Koch, 1984). These
models are not able to describe S-shaped dissolu-
tion patterns. Wagner (1969) related the distribu-
tion of the available surface area to the dissolu-
tion rate. Simulations resulted to S-shaped disso-
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lution patterns when the surface area was as-
sumed to follow the logarithmic normal distribu-
tion function. Dissolution can be modelled using
consecutive stages. For example the disintegra-
tion of tablet into particles and the dissolution of
the particles can be separated. Such models have
led to formulae which are applicable for S-shaped
dissolution patterns (Leary and Ross, 1983). Also
some experimental models have been used with
S-shaped dissolution profiles. The Rosin-Ram-
mler-Sperling-Weibull model as well as the Gom-
pertz model can prove useful (Langenbucher
1972, 1976; Dawoodbhai et al., 1991). The disad-
vantage of these functions is that the model pa-
rameters are difficult to interpret. These models
are not originally derived for dissolution data;
therefore they usually lack the connection to the
physical phenomenon of dissolution.

The purpose of this study is to derive and
briefly to test new dissolution models for systems



116

from which the drug content.is released in accor-
dance with an S-shaped dissolution profile.

Theory

Let us study a system containing drug sub-
stance from which the drug is dissolved under
sink conditions. Assuming the system is so homo-
geneous that all drug molecules have the same
probability p to dissolve in unit time, the dissolu-
tion takes place according to

AN=—pN dr, t>1, (1)

where dN is the number of molecules dissolved
in time d¢, N denotes the total number of undis-
solved molecules and ¢, is the lag time, during
which no dissolution occurs. Rearranging and us-
ing mass units, we have

dG
E= —SG,IZtO (2)

where G represents the amount of undissolved
drug and dG/dt is the dissolution rate. The
factor s is the average probability that a unit
amount of drug dissolves in unit time. Solving this
equation we have, for the amount of dissolved
drug, the formula

0, 0<t<ty,

<
M(t) =
( ) Mo(l _e~s(t—t0))’ t?to,

(3)

where M(t) is the amount of dissolved drug after
time ¢ and M, denotes the total amount of drug.
In the derivation of Eqn 3 we have the quite
weakly supported assumption that all molecules
have the same probability to dissolve, which
means that the factor s is a constant (indepen-
dent of time). In a real dissolution test this as-
sumption is hardly true. For example, in the case
of tablet dissolution there are several phenomena
which have an effect on the dissolution probabil-
ity 5 and also on the dissolution rate. The wetting
of the tablet surface, the disintegration of the
tablet core and the deaggregation of granules are
such factors. They exert an effect in such a way

that the dissolution probability s has a time de-
pendence, which is for example mainly due to the
slowly progressing disintegration of the tablet.
Also, it is obvious that s has different values in
different parts of the dissolving system. It is more
probable that dissolution takes place near the
tablet surface than deep inside the tablet core.
These features of the system can be taken into
account by replacing the constant s in Eqn 2 by
the time dependent function s(¢). The value of
the factor s(¢) reflects the dissolution probability
on the average in the whole dissolving system. No
attempt is made to discuss values of s in different
parts of the system.

During the beginning of the dissolution pro-
cess there usually is a lag phase. In the case of
tablet dissolution the surface is intact, possibly
covered by an undissolved coating or there is
some surface potential which prevents the begin-
ning of wetting and also dissolution. During the
lag phase the dissolution probability s is zero and
hence there is practically no dissolution. After
the lag time ¢, the probability is non-zero and the
dissolution rate starts to increase. In the case of a
coated tablet the coating is partly or totally dis-
solved or diffusion of drug substance through the
wetted coating starts. Tablet disintegration be-
gins. As a whole, the tablet undergoes a variety of
physical changes, which control the value of the
dissolution probability s. Therefore, this phase
will referred to in this presentation as the control
phase. During the control phase the average
probability of dissolution increases. After a cer-
tain time ¢, the system is supposed to reach the
status, in which the probability s has the constant
value o, the final dissolution probability. The
physical changes in the system have ended ex-
cluding the dissolution of the drug. Hence, after
the control phase end time ¢, the system is in
such a state that all remaining drug molecules
have the same probability to dissolve.

Formally, introducing a control factor ¢(¢) with
the restrictions 0 < (¢) <1, ¢(¢) increasing, we
may write s(¢) =o¢@(t) and the differential for-
mula, Eqn 2, becomes

dG
?z _0¢(t)G’t>t(] (4)



The control factor ¢(¢) should be given an
explicit form in order to solve Eqn 4. The factor
¢(t) is dependent on all the mechanisms which
are present during the control phase and which
affect the dissolution probability. All these or at
least the most governing ones should be modeled
if a more accurate or thorough dissolution model
is to be derived. In this study we omit detailed
models and use some simple approximation forms
of the control factor ¢(t). Possible approaches
are the use of the exponential function, as well as
the linear and quadratic approximations of ¢(z).

Model I: The exponential control factor

Thus, there is supposed to exist a group of
physical phenomena in the dissolving system
which affect the dissolution probability s through
the control factor ¢(z). It is assumed that their
combined effect can be approximated with one
time dependent function, the control factor. The
value of ¢(t) reflects the amount of changes
which have occurred in time ¢. The total amount
of changes is ¥, Suppose the changes in the
system take place with the rate d¢/dr, which is
proportional to the amount of changes which are
still to take place. Hence, the rate of changes is

de
— =M¥—p(t')),t'>0, (5)
dr '
1
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Fig. 1. Different forms of the control factor vs time: the
exponential (— - —— -~ ), the linear ( ) and the quadratic
control factor {(------ ). The time symbols are the lag time 1,

and the control phase end time ¢,.
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where ¢’ =t — ¢, and A is the change coefficient.
When Eqn 5 is solved with the constraint ¢(0) = 0,
we have

e(1) =W(l—e ™7, 1>1. (6)

The resulting function is non-negative, increas-
ing and it also has a limiting value ¥, when time ¢
goes to infinity. When we select ¥ = 1, the func-
tion fulfills the restrictions given to the control
function ¢(¢) above and we have

p(1)y=1—e N r>q,. (7N

The behaviour of the control factor is depicted
in Fig. 1. Combining Eqns 4 and 7, and solving
the differential equation, the amount of undis-
solved drug G(¢) is given by

G(t)=M, exp{—a{t ~ty— %(1 _e—/\(:-;o))]}’

tz1, (8)

where M, is the total amount of drug. The frac-
tion of dissolved drug can be written as M(¢) =
M, ~ G(t). Hence, the final form of the dissolu-
tion model with the exponential control factor
(model I} is

0, O<r<yy,

M(1)= Mo(l—exp{‘o[t -ty = %(l—e‘*"”"”)]}),

>t
(9

where ¢, is the lag time, M, represents the total
amount of drug, ¢ is the final dissolution proba-
bility and A denotes the change coefficient of the
dissolving system. Comparison of Eqns 3 and 9
shows that the physical changes in the system
associated with the dissolution probability are
expressed in an extra exponential term. If in the
case of tablet dissolution the tablet disintegration
and other phenomena occur very rapidly com-
pared to the dissolution time, the coefficient A is
much greater than unity and the extra term is
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small compared to the term ¢ —¢,. In this case
the extra term vanishes and the double exponen-
tial model (Eqn 9) is reduced into the simple
form (Eqn 3). The effect of the parameter A on
the dissolution pattern is presented in Fig. 2.

Model 1I: The linear control factor

In model T (Eqn 8) it is assumed that the
changes in the dissolving system associated with
the dissolution probability occur according to an
exponential curve. As can be seen from Fig. 1 the
system is supposed to change rapidly after time
ty. It can also be noted that the control factor
reaches a value of unity asymptotically. These
features seem to be reasonable. However, in some
situations it is probable that all changes in the
system which affect the dissolution probability
take place in time ¢, i.e., ¢(t) =1 when ¢ > ¢,.
The behaviour of the control factor ¢ between
the lag time ¢, and the control end time ¢, can be
presented by many formulae, but the linear and
quadratic functions are unquestionably the sim-
plest ones (Fig. 1). If the function is linear, the
changes are assumed to occur at a constant rate.
In terms of the control factor,

de
TR (10)
where ¢ is a constant. Assuming the system has a
lag time t,, we can use a new time coordinate
t'=t—1t, and also a constant ¢’_ =t, —t,, which
leads to the segmented formula for the control
factor

© (11)

o(t) =t

Hence we obtain for the differential formula
(Eqn 3) the segmented form

dG t’

—=-0G—, 0<t'<t',

dt t', (12)
dG G

—_— = — s t'>t,.

a7

Amount dissolved (%)
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Fig. 2. Dissolution profiles with different forms of the control
factor. The final dissolution probability o = 0.3 min~!, and
the lag time ¢, is assumed to be zero. Panel a shows the
exponential control factor with the change coefficient A vary-
ing from 0.03 min~! to infinity; (b) the linear; and (c) the
quadratic control factor. In panels b and ¢ the control end
times ¢, are 0, 10, 20 and 30 min.



These equations have two restrictions. The
resulting function G(¢') should be continuous at
t’, and the value of G at zero should be equal to
M,, the total amount of drug to be dissolved.
Solving the equations, moving back from the ¢'-
coordinate system to the ¢-coordinate system, and
replacing the amount of undissolved drug G with
the amount of the dissolved drug M, we obtain
for the dissolution model with linear control fac-
tor (model II) the segmented formula

M(t)=

0, 0<t<ty,

PRY
Mo{l—exp(—H)},

to—1
MO{I—exp[—o(t—tO— °2 0)]} 124,

ty<t<t,,

(13)

Model III: The quadratic control factor

As previously stated, the quadratic function is
the third in the set of simple approximations for
the control factor ¢(¢). Formally, if the rate
change is proportional with time, the differential
equation for the control factor is

de
_ = 't, 14
3 ¢ (14)

where ¢’ is a constant. Eqn 14 is valid between
time ¢, and time f.. Applying the same method
as above, we find

2

tl
, —, O0<r'<y,,
e(t')=1{ 1t ¢ (15)
1, >t

TABLE 1
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Eqgn 15 is substituted in the differential for-
mula (Eqn 4), and the resulting equations are
solved. As a result we obtain for the dissolution
model with the quadratic control factor (model
III) the segmented formula

M(t)=

0, 0<t<ty,

o(t—1,)
el )
MO{I—exp[—U(t—to—Z(t—e;@”}, t>1,..

(16)

The close relationship between the linear
model (Eqn 13) and the quadratic model (Eqn
16) is clearly seen. Both can be compared to Eqn
3, which is due to the assumption that under
certain conditions all drug molecules have the
same probability to dissolve and the dissolution
profile is a simple exponential function. The ef-
fects of the physical mechanisms which affect the
dissolution probability are expressed in the pres-
ence of the second segment and in extra terms
inside the exponential of the third segment in
Eqgns 13 and 16.

Models II and III (Eqns 13 and 16) assume
that the physical changes affecting the dissolution
probability occur between the lag time ¢, and the
control end time ¢.. In the limiting case #,=1¢,,
which in the case of dissolving tablets means that
the tablet practically explodes into fine particles
at the moment ¢,. Now the second segments of
models II and IIT vanish and the models are
simplified into the form of Eqn 3. This can also
be seen in Fig. 2, where dissolution profiles ac-
cording to the models with the linear (model II)

fy<t<t,,

The model parameters and the squared sum of errors of the fitted dissolution models

Dissolution Type of Final dissolution Lag time ¢, Change Control end Sum of
model control factor probability o (min) constant A time ¢, (min) squared
(min~") (min~1) errors SSE
Model I Exponential 1.223 0.183 - 83.7
Model I1 Linear 0.803 - 5.99 65.2
Model I11 Quadratic 0.996 ~0.62 - 6.00 19.0
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and the quadratic control factor (model III) are
presented in addition to the model with the expo-
nential control factor (model I). If it is assumed
that there is no control phase (¢, = ¢, or A — ),
the dissolution profiles are consistent with the
pattern of the simple exponential function (Eqn
3). If the length of the control phase is significant,
the dissolution pattern is S-shaped and the disso-
lution is retarded.

Materials and Methods

The derived dissolution models were briefly
tested using the dissolution data of tablets con-
taining theophylline as active substance. It has
been reported previously that the dissolution pro-
file of theophylline tablets is S-shaped (Dawood-
bhai et al., 1991).

The active drug substance in the test formula-
tion was anhydrous theophylline (Ph.Eur.). The
particle size distribution of the active substance
was determined by the laser light diffraction
method (Malvern 2600C Droplet and Particle
Sizer, Malvern Instruments, Malvern, U.K.). The
10, 50 and 90% fractiles were 62, 140 and 470
wm, respectively, the relative standard deviations
being less than 3%. In addition to the active drug
the composition contained 20% commonly used
tablet excipients. The active substance and the
main excipients were granulated in an instru-
mented fluidized bed granulator (Glatt WSG-5,
W. Glatt, Haltingen, Germany). The binder solu-
tion contained 10% of Kollidon K 25 and 20% of
Eudragit NE 30 D in purified water. The batches
contained 4.0 kg dry material. The final granules
were dried in an oven at 40 + 2°C for 24 h.

Before tablet compression, 0.7% of magne-
sium stearate was added to the granules as a
lubricant. The concave tablets, size 7.5 X 19.2 mm,
average weight 650 mg, were compressed using a
production scale rotatory press (Fette P2000, Wil-
helm Fette GmbH, Hamburg, Germany). The
compression speed was 30 000 tablets per h. The
relative humidity and the temperature of the air
during compression were 40 + 1% and 23 + 1°C,
respectively. The tablet machine was adjusted so
that the target hardness of the tablets was 15 kp

(Schleuniger Hardness Tester, Dr. Schleuniger
Productronic AG, Solothurn, Switzerland). This
was achieved using the maximum precompression
force of 0.4 kN and the maximum main compres-
sion force of 6.2 kN.

The dissolution measurements were made us-
ing an automated dissolution tester and a stan-
dard USP XXII paddle method. The dissolution
medium was 900 ml of thermostated (37°C) phos-
phate buffer solution (pH 7.5) and the speed of
rotation used was 50 rpm. The sampling times
were 0, 0.5, 1, 2, 3,4, 5, 6,7 and 8 h. Six tablets
were used in all dissolution studies. The means of
the measured dissolution values were used in the
data analysis. The experimental data were fitted
to the dissolution models with the exponential
(model I), linear (model IT) and quadratic control
factor (model ITT) using the non-linear regression
procedure of the MathCAD program (Version
3.0, MathSoft Inc, Cambridge, MA, U.S.A.). The
MathCAD algorithms are available from the au-
thors upon request. The estimated parameters
were the final dissolution probability ¢ and the
lag time ¢, as well as the change coefficient A
and the control end time ¢, where applicable.
The end value of the dissolution M, was esti-
mated graphically to be 102%. The sum of
squared errors (SSE) was calculated for all mod-
els in order to evaluate the goodness of fit.

Results and Discussion

The measured dissolution values (mean + SD)
and the fitted dissolution profiles are presented
in Fig. 3. The estimated parameter values and the
values of sum of squared errors (SSE) of the
fitted dissolution models are listed in Table 1.

As seen in Fig. 3, all three models are able to
describe the S-shape of the dissolution data. The
results of all fittings are acceptable, but slight
differences can still be seen between the models.
The models with the exponential (model I) and
the linear control factor (model II) fit to the
experimental data quite identically. However, the
SSE is lower when model 11 is used (Table 1). In
this test case the model with the quadratic con-
trol factor (model III) has the best fit to the data
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Amount dissolved (%)

Time (min)

Fig. 3. Measured dissolution values of theophylline tablets

(mean+SD, N =06) and fitted dissolution profiles with the

exponential (- ~— - —~ ), the linear ( ) and the quadratic
control factor (------ ).

compared to the other models. The SSE is signifi-
cantly lower, and the fitted curve in Fig. 3 can be
ranked the best also visually. Model III best
decribes the test data if the negative lag time
t, = —0.62 min can be given a reasonable inter-
pretation. One explanation is the presence of
loose powder on the surface of the tablets, which
in view of the model means that the disintegra-
tion of the tablet structure has begun before the
dissolution test had started.

Parameters common to all three models are
the total amount of drug M, the final dissolution
probability ¢ and the lag time ¢,. These parame-
ters have the same interpretation as in the case of
the simple exponential function (Eqn 3). In addi-
tion to these parameters we have the change
coefficient A and the control end time ¢, which
provide information about the control phase.
When the model with the exponential control
factor is used, this phase can be described with
the half-time ¢, , = In(2)/A. Time ¢, ,, is defined
as the time during which half of the remaining
changes occur. In the test case 7, ,=3.8 min.
The models with the linear and the quadratic
control factor have as a parameter the control
end time ¢, after which no control effect on the
dissolution rate is present and the dissolution
probability is a constant. Hence the length of the
control phase At can be estimated with Ar.=¢,
—t,. The tested theophylline tablets have the
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At values of 5.2 min in the case of the linear
control factor and 6.6 min with the quadratic
control factor, respectively. The length of the
control phase Ar. gives an estimation of how
long the physical phenomena affecting the disso-
[ution probability are present in the dissolving
system.

Simple approximations of the control phase
are used in deriving the three dissolution models
presented in this study. It is evident that the
models can be developed further if more specific
formulae for the control factor can be derived.
For example, in the case of tablet dissolution the
effect of disintegration, deaggregation and wet-
ting on the dissolution probability should be sep-
arated.

In the experimental part of this study the
derived dissolution models were tested on the
data of uncoated tablets. Another application of
the models might be the dissolution studies of
coated tablets, in which case the coating acts as
the retarding factor of the dissolution. It may also
be useful to apply the models to dissolution stud-
ies of capsules, suspensions, suppositories, and
even for drug release of transdermal products.
The model parameters can give information about
the fine structure of the dissolving system, which
can be useful in the formulation of new products.
In general, the models can be used for comparing
quantitatively the dissolution behaviour of differ-
ent batches of products.
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